Tools for Mapping Vision and Change Core Concepts and Competencies

The following pages contain tools for mapping the extent to which individual courses in your department's curriculum are currently aligned with the recommendations in the Vision and Change report. These tools may be used by individual faculty members at first before the department works together to identify gaps or areas of improvement in the curriculum as a whole. These tools are useful in preliminary preparation for curriculum mapping for the department. They also serve as useful preparation tools prior to using the PULSE Self-Evaluation and Certification Rubrics available at www.pulsecommunity.org.

The tools are the following:

1) Worksheet to list all courses taught by an individual faculty member
2) Worksheet to map Vision and Change Core Concepts within a particular course
3) Worksheet to map Vision and Change Core Competencies applied to Biology practice within a particularcourse
4) Worksheet to map Vision and Change Core Competencies within a particular course
5) Worksheet to map the use of instructional methods to foster student-centered learning in courses taught by an individual faculty member

Created by Nitya Jacob

Worksheet 1

List all of the courses that you typically teach at your institution in any given semester (or you may start with the courses that you will teach in the upcoming academic year):

	Catalog Number	Title of the Course	Majors/ Non majors	Team taught/Multiple sections in a semester/ One section	Do you make most of the decisions for the course? Yes/No
1.					
2.					
3.					
4.					
5.					
6.					
7.					
8.					

Worksheet 2 - Mapping the Extent of Addressing Vision and Change Core Concepts in an Individual Course

Course Number and Title: \qquad
List 4-5 key learning outcomes or objectives for this course. Indicate if one or more of the V\&C Core Concepts are addressed by
 Descriptions of the core concepts are available in the Vision and Change Report. Consulting the BioCore Guide ${ }^{1}$, a nationally validated tool for interpreting these core concepts, is helpful for this worksheet.

Learning outcomes or objectives for this course	Evolution	Structure and Function	Information, Flow, Exchange, and Storage	Pathways and Transformations of Energy and Matter	Systems
	012345	012345	012345	012345	012345
	012345	012345	012345	012345	012345
	012345	012345	012345	012345	012345
	012345	012345	012345	012345	012345
	012345	012345	012345	012345	012345
	012345	012345	012345	012345	012345
	012345	012345	012345	012345	012345

${ }^{1}$ Brownell et al. 2014. BioCore Guide: A Tool for Interpreting the Core Concepts of Vision and Change for Biology Majors. CBE-Life Sciences Education, 13: 200211.

Worksheet 3 - Mapping the Extent of Vision and Change Core Competencies in an Individual Course

Course Number and Title:

\qquad
The following are examples of core competencies applied to Biology practice. Indicate to what extent each of these practices are applied in this course. ($0=$ not practiced, $3=$ practiced to some extent, 5=practiced in depth). Descriptions of the core competencies are available in the Vision and Change Report.

Core Competency	Example of Practice				
Ability to apply the process of science	Observational strategies	Hypothesis testing	Experimental design	Evaluation of experimental evidence	Developing problem-solving strategies
	012345	012345	012345	012345	012345
Ability to use quantitative reasoning	Developing and interpreting graphs	Applying statistical methods to diverse data	Mathematical modeling	Managing and analyzing large data sets	
	012345	012345	012345	012345	
Ability to use modeling and simulation	Computational modeling of dynamic systems	Applying bioinformatics tools	Managing and analyzing large data sets	Incorporating stochasticity into biological models	
	012345	012345	012345	012345	
Ability to tap into the interdisciplinary nature of science	Applying physical laws to biological dynamics	Chemistry of molecules and biological systems	Applying imaging technologies		
	012345	012345	012345		
Ability to communicate and collaborate with other disciplines	Scientific writing	Explaining scientific concepts to different audiences	Team participation	Collaborating across disciplines	Cross-cultural awareness
	012345	012345	012345	012345	012345
Ability to understand the relationship between science and society	Evaluating the relevance of social contexts to biological problems	Developing biological applications to solve societal problems	Evaluating ethical implications of biological research		
	012345	012345	012345		

Worksheet 4 - Mapping the Extent of Vision and Change Core Competencies in an Individual Course

Course Number and Title: \qquad

List 4-5 key learning outcomes or objectives for this course. Indicate if one or more of the Vision and Change Core Competencies are addressed by the learning outcome and to what extent ($0=$ not addressed, $3=$ addressed to some extent, $5=a d d r e s s e d ~ i n ~ d e p t h) . ~$ Descriptions of the core competencies are available in the Vision and Change Report.

Learning outcomes or objectives for this course	Ability to apply the process of science	Ability to use quantitative reasoning	Ability to use modeling and simulation	Ability to tap into the interdisciplinary nature of science	Ability to communicate and collaborate with other disciplines	Ability to understand the relationship between science and society
	012345	012345	012345	012345	012345	012345
	012345	012345	012345	012345	012345	012345
	012345	012345	012345	012345	012345	012345
	012345	012345	012345	012345	012345	012345
	012345	012345	012345	012345	012345	012345
	012345	012345	012345	012345	012345	012345

Worksheet 5 - Mapping the Extent of Student-Centered Learning Instructional Practices Used in Your Courses

The following are examples of instructional methods that foster student-centered learning. Indicate to what extent each of these practices are applied in this course. (0=not practiced, 3=practiced a few times, 5=practiced multiple times throughout semester or extensive module). Descriptions of these practices are available in the Vision and Change Report.

Course that you teach (Course \# and title)	Authentic research; open-ended; studentdesigned; research activities	Case Studies	Classroom assessment and immediate response systems (clickers, "murkiest point", etc)	Inquiry-based learning and inquiry-driven learning	Team-based learning	Model-based learning
	012345	012345	012345	012345	012345	012345
	012345	012345	012345	012345	012345	012345
	012345	012345	012345	012345	012345	012345
	012345	012345	012345	012345	012345	012345
	012345	012345	012345	012345	012345	012345
	012345	012345	012345	012345	012345	012345
	012345	012345	012345	012345	012345	012345

